

InfoCentral and the
Semantic Web

An alternative vision for global-scale
 property graph data models

Draft – Updated March 5, 2019

by Chris Gebhardt

Short explanation of relationship
to the Semantic Web

“InfoCentral proposes a comprehensive retooling
of the Semantic Web for a fully-decentralizable
internet. It mandates a network and information
architecture with exclusive cryptographic hash
referencing of data resources. In conjunction, a
reference collection model allows continuous
discovery and propagation of new data. As these
axioms permeate designs, InfoCentral aims for
identical expressivity at the semantic graph
level.”

InfoCentral is ...
● Not strictly a “Semantic Web project”

– It does not depend upon any Semantic Web
technologies at the foundation.

– Compliance with existing W3C standards is not a
project-level requirement. (clean slate, open to
break stuff, etc.)

● Not strictly a replacement for Semantic Web
– We love SW and build upon the same foundations.
– SW technologies will be used and adapted

whenever possible.

Sounds painful! Why do this?

● Lack of reference stability is the Achilles heel of
the classic web. It drives users to large
centralized services to regain stability.

● The reference model must change:
– Semantic Web / Linked Data: names to mutable data
– Infocentric architecture: hashes to immutable data

● Data management becomes easy:
– conflict-free, multi-party data layering
– default versioning (guaranteed unique ID per revision)

The technical strategy..
● Mandate immutable identity and versioning

semantics. (for reliable referencing & portability)
● Guarantee independence from centralized data

storage and authoritative naming. (DNS, etc.)
● Require fine decomposition of graph data as it is

persisted into immutable data entities.
● Promote client-side cryptography over server

ACLs for protecting private user data
● Ruthlessly eliminate unneeded complexity,

redundancy, and legacy cruft (clean slate design)

What about?..

● Don't people want/need meaningful naming?
– Meaningful naming implies reference instability.

(mutability, authoritative services, etc.)
– Naming belongs in metadata, not data or network

architectures. (Proper separation of concerns..)

● Lost efficiency from aggressive decomposition into
small graph data entities? (vs. larger docs)
– Canonical persistent data entities are usually ingested

into more efficient local data structures.
– Network protocols support batch and differential transfer.

Repositories will internally aggregate related data.

Hash Reference Challenges:
Changes to basic data modeling aspects

● In contrast to mutable named documents, cyclical
references are not possible with hashes.
– Data entities A and B cannot refer to each other, but C

can refer to both and indexing allows bidirectional
traversal.

● Projection between the graph and data model is
rarely 1:1.
– The data entity graph is acyclic; the semantic graph

model is not.
– The data model contains security and management

details not needed by the semantic graph model.

Hash Reference Challenges:
Changes to language design and software architecture

● Heavily favors declarative / functional paradigms
– Elimination of persistent data mutability (append only)

opens the door for massive inversion of control..
– Logic alongside to support fully-independent data

● Strong typing and semantics, not encapsulation.
– Validation through public schemas and ontologies
– Business logic is external but context-preserving

● Dynamic composition, not pre-compiled apps
– User is free to adapt their information environment at

will, without risk of losing data or context.

Managing atemporal data

● The RDF data model is atemporal. Statements
in the graph have inherent self-identity and
immutability – any change makes them a
different statement.

● However, web containers of RDF data are not
atemporal. Statements come and go. New
statements may replace existing statements,
with or without annotation that this signifies a
related real-world change of state.

Managing atemporal data

● A practical breakdown in nominal atemporality is that the
context of an RDF statement is ambiguous. It may be
later enhanced by layering metadata, effectively making
it a different statement. (and effectively temporal)

● Example:
– Pittsburgh's air temperature is 50°F.
– Pittsburgh's air temperature is 50°F, said John Smith[PK_ID],

on 20170123-15:38:22.31UTC, at location [80.1254,42.5315].

● There may exist many identical “Pittsburgh's air
temperature is 50°F” statements in the global graph, but
they are not the same statement when context is
considered.

Managing atemporal data

● The dimensionality needed to make a statement
unambiguous is sometimes unknown at the time
it is initially made.

● Using reification to annotate a statement gets
ugly very quickly. (ex. reifying a previous
reification of a statement) This was abandoned.

● Restructuring a statement using blank nodes, to
create an n-ary relation, causes it to become a
different statement. It also prevents external
annotation, and future changes must occur in
the subgraph containing the blank node.

Managing atemporal data

● SW struggled with this issue for a long time.
There were proposals to increase arity of RDF
tuples beyond the subject, predicate, object
triplet.

● Solution: RDF named graphs – create
addressable identities that may be the subject of
future metadata. (most notably provenance)

● However, fine-grained named graphs are not
mandatory. The scope of addressable graphs
may be huge and have no fragment IDs, making
annotation impractical.

Managing atemporal data
● Our graph data model has stricter decomposition:

– Statements exist in immutable 'named graphs' (Standard
Data Entities, which are not named but hash-referenced.)

– Statements in an entity have a single external subject.
(Entities may also contain self-statements)

● We provide a shortcut for statement reification. A
statement (and optionally its components) in an entity
may be referenced by a simple numerical index.
– Hash_ID + statement_index [+ component]
– This is not visible at the network level, where only hash

identities are used for metadata aggregation.
– This indexing method allows a statement's predicate to be

separately annotated, a novel expressive ability.

Persistent Data Model to
Statement Graph Projection

● Not everything in the base data model needs to be
projected into the statement graph at all times.
– ex.) identity-grounding artifacts like nonces and data

management oriented metadata
– We often use a curation step (revisions, trust, etc.) when

creating a graph view for a particular scenario.

● An IC hard rule: Never create graph statements
without creating data entities for them to live in.
– In other words, statement graph data must always be

immutably projected onto the base data model at creation.
– This provides a standard identity and data management

layer that is currently ad-hoc with URI+RDF.

Major differences

● InfoCentral's scope covers many aspects of
network and software architecture, which are
outside the domain of the Semantic Web and its
primary focus upon knowledge representation
and machine reasoning.

● As a broader, multidisciplinary approach, we
believe there is justification for breaking strict
compatibility with well-established standards
that get in the way of needed architectural
shifts.

Major differences

● InfoCentral data model prohibits all current URI schemes,
in favor of a native hash-only scheme.
– Mixing mutability semantics is hazardous and unnecessary.
– Legacy URI schemes carry enormous complexity.
– The new identity infrastructure has wide-reaching effects and

must become ubiquitous to work as intended.

● Bridges to legacy web systems:
– Mutable data may be sampled into native data entities.
– Entities may reference legacy URIs, but only in a bibliographic

sense, not as first-class references.
– Web systems may use the IC Persistent Data Model behind

the scenes. (Though overhead is higher than traditional DBs..)

Major differences
● InfoCentral re-uses a subset of Semantic Web

technology, with a few extensions.
● We rigidly disallow some features of the RDF data

model that don't fit the architecture.
– Explicit reification syntax (ugly, unneeded)
– Labeled blank nodes

● for concrete subjects: unjustified as there is near-zero cost
to create and maintain a hash ID (ie. new root entity)

● for abstract subjects: most existential variables will likely be
handled separately, TBD. (some unlabeled bnodes allowed)

● Our proposal subtly varies from RDF semantics.
This will need to be formalized.

Otherwise, the W3C Semantic Web standards are
well-engineered with respect to separation of
design concerns.

RDF / OWL / RIF / SPARQL don't depend
on HTTP or other URI schemes.

OWL, RIF, and others are abstract until they are
mapped to RDF semantics. Only minor rework will
be needed here. SPARQL would be implemented
in higher software layers, along with graph stores.
It is abstracted from the low-level data model.

InfoCentral is more concerned with aggressive
divergence from stale Internet / Web architecture.

Practicality speaking.. Semantic Web has a small installed base,
manned by smart people who are quite capable of doing a

conversion. Now is the time to fix the problems!

Unfortunately..

Most practical Semantic Web tools and products
are strongly convoluted with traditional Web
architecture.

ex.) All existing OWL ontologies must be converted from
using HTTP URIs to Hash IDs, before use in InfoCentral. We
suspect the best strategy is to create fresh ontologies, using
existing useful ones as mere templates, while applying design
patterns better suited for the new, collaborative regime.

General assumptions
● Semantic Web

– vision: a world of authoritative but largely-independent
publishers of incomplete graph data

– solution: allow domain-based silos, aggregate as much
graph data as possible, filter on provenance as
determinable, and use logical inference to de-duplicate
and fill in the gaps

● InfoCentral
– vision: a world of socially-networked collaborative

publishers, who continuously improve and consolidate
information within a fully shared graph (Git / wiki-like)

– solution: fully decentralize information, develop trust
networks and communities to guide the process of
producing and curating quality information

Hash-based Identity Changes
Everything..

● Semantic Web data is bound to URIs, which are
subject to arbitrary change in availability and what
they point to. Modifications must pass through
gatekeepers at each authoritative source. This
frustrates fluid collaboration between data publishers
and limits involvement.

● InfoCentral data is immutable and bound to a
nameless and location-free hash identity which can
never change. This encourages all parties to
collaborate on the same distributed graph, knowing
that references will never go stale, availability cannot
be taken away by any one party, and anyone can
directly publish new and modified data. (ie. Git-like)

Primary Focuses

● Semantic Web
– authoritative publishing of semantically rich information

over traditional host-based (centralized) networks
– automated inference and reasoning about graph data

● InfoCentral
– globally collaborative production and refinement of

semantically (and socially) rich information
– new software architecture for working with graph-

structured information
– decentralized systems and information-centric

networking
– Use AI today to boost productivity of semantic labeling

These are mostly complimentary!

(If we can get everyone on board..)

Approach comparison

● Semantic Web
– Build as many bridges as possible to existing

technologies. Adopt designs that incorporate the
needs of existing and legacy systems, both
technological and social.

● InfoCentral
– Start from scratch and build a new software

ecosystem. Accept that, given the extent of needed
change, the cheapest and easiest option is often full
conversion of legacy systems and information. (But
don't be closed to building bridges either...)

Approach comparison

● Semantic Web
– Enhance existing software applications with

semantically-rich content. Attempt gradual,
voluntary conversion of the document Web into a
hybrid Web of data and documents.

● InfoCentral
– Obsolete the very concepts of applications and the

document Web. Start a software engineering
revolution that genuinely excites developers.

Approach comparison

● Semantic Web
– Rework familiar UI paradigms and metaphors, in

hopes of making the new technology accessible
with reduced up-front investment.

● InfoCentral
– Explore completely new UI paradigms native to

graph-structured information. Recognize that true
progress will mean breaking everything here. The
higher up-front cost will be offset by plummeting
sustaining costs as network effects emerge.

Semantic Web's Commercial Issues
● Incompatible with current software architecture and economics

– Incorporation of Semantic Web technologies costs more and the added
openness only benefits competitors. Yet open network effects are
required to add value, for mainstream applications.

– The typical developer of silo'ed applications (or walled-garden cloud
software ecosystems) doesn't see any tangible benefits.

– ex.) If Facebook fully adopted the Semantic Web, it would lose control
and visibility of how people are using its social graph. (its cash cow!)

● Limited practical application
– SW adds little to monolithic software architectures, relative to the latest

generation of graph and document DBs, machine learning tools, etc.
– Benefits for large graph databases in some scientific research

● Unmanaged complexity
– severe learning curve, inaccessible to the typical developer (though

better tooling could help here..)

In Summary

● The Semantic Web project has produced some
great tools and techniques for creating,
managing, and reasoning with semantic
property graphs.

● Legacy web architecture was ideal when
invented but is now is holding us all back.

● The Semantic Web has failed to gain
acceptance as a result.

● Let's build the Global Information Graph!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

